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a b s t r a c t 

Separating moving objects and backgrounds from a video is an important yet challenging task for video 

analysis due to complex moving behaviors, camera jitters/movements, and huge data amount in real- 

world applications. To deal with these issues, this paper proposes a unified framework called spatiotem- 

porally scalable matrix recovery (SSMR), which has a moderate computational and space complexity scal- 

able to temporal and spatial resolution of videos. In the proposed model, the inherent batch-mode nu- 

clear norm for low-rank approximation is replaced with an explicitly low-rank matrix factorization in 

order to achieve online implementation. Motion information extracted by an optical flow method is in- 

corporated into the data term to facilitate the separation of moving objects from the background. Affine 

transformation is embedded into the model and simultaneously optimized with other variables to handle 

camera motions. In addition, we proposed a pyramidal scheme to achieve spatial scalability for high defi- 

nition videos. Experimental results demonstrate that our method outperforms many other state-of-the-art 

methods and can handle videos of various complex scenarios. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Extracting interesting information from videos is an important

et challenging task, and has received tremendous attention [1–4] .

ackground modeling is one of such topics, and is useful across

any applications including motion detection [5,6] , object track-

ng [7] , behavior recognition [8] and video coding [9] . Foreground-

ackground separation is to recover background components and

etect moving foreground objects from original video clips [10] ,

nd there are several challenges, such as illumination changes, ob-

tructions, camouflage and shadows cast by the foreground ob-

ects [11] in this field. Moreover, camera moving in many scenar-

os leads to motion blurring and dynamic background, which is

ven difficult to resolve. Many research works have tackled vari-

us challenges of background/foreground separation from different

erspectives. 

Early research works classified pixels into either background

omponents or foreground components by estimating the distri-

ution of pixel intensities locally under various statistical models

uch as Gaussian distribution [12] , the Gaussian mixture model
∗ Corresponding author. 
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GMM) and its variants [13,14] , the Student’s-t mixture model

SMM) [15] . Being able to exploit global structure of video clips,

obust principal component analysis (RPCA) [2] have been inten-

ively investigated in background and foreground separation with

arious techniques such online implementation [16–18] , transfor-

ation compensation [6] , motion assistance [19] , and spatiotem-

oral regularization [20,21] . Although these RPCA-based methods

chieved significant progress, they still suffer from problems, such

s presence of noise, lack of spatial and temporal constraints, and

lobal motion in the background [22] . While it is difficult to solve

ll the challenging problems in a single algorithm, there are three

ey aspects for practical applications: 1) the capability in handling

oving objects with complex behaviors such as slow moving and

amouflages; 2) the ability to handle moving backgrounds due to

amera jitter or motion, and 3) the scalability to high definition

ideos with affordable computational and memory resources. 

To resolve the challenges mentioned above, this paper proposes

 unified framework, called spatiotemporally scalable matrix recov-

ry (SSMR), for background modeling and moving object detec-

ion. To prevent the complex-moving objects leaking into back-

round components, regions of moving objects are identified by

otion information via optical flow, and are then used to rectify

he data consistency. The low-rank regularization of background

omponents is relaxed to matrix factorization with explicit rank

onstraint, from which an online implementation is derived to
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Fig. 1. The example of our proposed algorithm. The top raw is the high-resolution reconstruction result. Specifically, (a), (b), (c) are the original image, recovered background 

image and enlarged image by bicubic interpolation, respectively. The bottom tow is the results of dynamic videos. (d) is the input frame. (e) and (f) are results of our 

algorithm and the state-of-the-art method, OMoGMF [23] . 
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avoid the computation- and memory-demanding singular value de-

composition (SVD) in the batch-mode implementation. The back-

ground, foreground, and error components are updated alternat-

ingly under the framework of the augmented Lagrangian method.

To achieve spatial scalability for high definition videos, the SSMR

model is applied to the lowest-frequency subband of the multiscale

pyramid representation, and the recovered low-resolution back-

ground components are synthesized into high resolution version

through pyramid reconstruction. To compensate background move-

ment due to camera jitter or motion, the SSMR model is enhanced

with an affine transformation, whose parameters are simultane-

ously estimated online along with the background, foreground, and

error components such that the low-rank assumption is still valid.

Experimental results on various video clips with both static and

dynamic backgrounds show that the proposed method achieves the

best performance among state-of-the-art online methods for both

background recovery and moving object detection, and outper-

forms the competing batch-mode methods for most cases ( Fig. 1 ). 

This paper is an extended version of our previous work [24] and

the additional contributions are summarized as below. First, we in-

corporate affine transformation into the model to handle videos

with moving backgrounds, and derive an efficient numerical al-

gorithm. Second, a multi-scale pyramidal scheme is proposed

to achieve spatial scalability for high-definition videos. Third,

this paper also provides more detailed discussions and experi-

mental evaluations. The rest of this paper is organized as fol-

lows. Section 2 presents a brief overview on related work. In

Section 3 , we propose the SSMR model and numerical algorithms.

Section 4 adapts the SSMR model to handle moving backgrounds

by simultaneously optimization of camera motion and back-

ground/foreground components. Experimental results and analysis

are given in Section 5 , followed by conclusions in Section 6 . 

2. Related work 

The separation of background and moving objects components

are very challenging due to the many possible interferences such

as varying illumination, slow motion of objects, and dynamic back-

grounds. The fundamental rationale is to characterize their dif-

ferent properties in the spatiotemporal volume. Simple statistical

models, e.g. , temporal median filtering [25] and running Gaussian

average [12] , are fast to detect moving objects with simple mo-

tion pattern from a static background, but are incompetent for
omplex motions and backgrounds with multi-modal distributions.

s the most prevalent statistical model, GMM has been applied

o background modeling to exploit multi-modal distributions of

ackground and foreground intensities [13,23,26–28] . Other flex-

ble statistical models are also investigated in the task of back-

round modeling, such as the adaptive GMM [29] , the generalized

MM [14] , the Student’s-t mixture model (SMM) [15] , the Dirich-

et process GMM [30] , Gaussian conditional random field [31] , and

eneral nonparametric kernel density estimation [32] . Despite their

romising results for a broad class of videos, such statistical mod-

ls are applied locally, either pixel-wise or patch-wise, and in-

vitably ignore the global structure the spatiotemporal video vol-

me. 

Regarding global methods in background modeling, a family

f low-rank matrix recovery models have been intensively inves-

igated. In developing the robust principal component analysis

RPCA), as known as principle component pursuit, Candes et al.

2] show that background-foreground separation from videos can

e formulated as a low-rank recovery problem: the background

omponents over time are nearly duplicated and the associated

atrix is theoretically rank-one; while the foreground components

sually take up only a small portion of the picture, and thus can

e modeled as a noise component distributed sparsely. For effi-

ient numerical algorithm, the rank regularization of background

omponents and sparsity regularization of foreground components

re relaxed to the convex surrogates, i.e. , nuclear norm and � 1 -

orm, respectively. Following this avenue, many research works

ave significantly improved the performance by incorporating var-

ous ingredients according to video characteristics. In [33] , a two-

ass RPCA strategy is proposed to refine the accuracy of fore-

round detection. Zhou et al. [6] proposed to detect moving ob-

ects by detecting contiguous outliers in the low-rank represen-

ation (DECOLOR), where the support of moving objects are si-

ultaneously optimized via a Markov random field (MRF) along

ith background components. Cao et al. [20] enhanced RPCA by

mposing spatial and temporal continuity with TV regularization.

imilarly, Xin et al. [19] further imposed a smoothness prior on

he foreground components besides the sparsity prior. Yang et al.

19] proposed a motion-assisted matrix restoration (MAMR) model

y incorporating motion information as a weighting matrix. Sim-

lar to [19] , Sobral et al. [34] constrained the foreground compo-

ent by shape and confidence maps, which are both extracted from

patial saliency maps, to reinforce the foreground detection. Javed
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t al. [35,36] designed an online spatiotemporal robust principal

omponent analysis (OS-RPCA) algorithm by incorporating spatial

nd temporal maps into RPCA. Taehyeon et al. [37] used TUCKER2

ecomposition to enhanced background subtraction, avoiding iter-

tive process in nuclear norm minimization. In [38] , Li et al. first

elected a set of discriminative frame for background modeling and

hen extracted background with a low-rank tensor recovery model

rom the selected frames. More RPCA methods can be found in

omprehensive surveys [22,39] . 

Low-rank based methods assumes that background compo-

ents of video frames are well aligned otherwise the low-rankness

ould be violated. Videos in practical applications such as surveil-

ance, however, usually present dynamic backgrounds due to

an/Tilt/Zoom(PTZ) operations or shaking of cameras. RPCA and

ts variants methods could tolerate slight background jittering, but

ould fail when it comes to dynamic backgrounds. In [40] , Peng

t al. demonstrated that RPCA is still quite powerful in a number

f vision tasks on linearly correlated images with accurate align-

ent. To handle dynamic backgrounds, Zhou et al. [6] simultane-

usly optimize the alignment and background components under

he low-rank matrix recovery framework. Other similar works can

e found in [41,42] . 

As the low-rank approximation operates on a bunch of video

rames, such a batch-mode optimization not only introduces large

elays, but also requires huge amount of computational and mem-

ry resources. Despite their promising performance, the heavy

atch-mode background models are difficult to apply to real-time

pplications. By relaxing the nuclear norm to the Frobenius norm

f two factorized low-rank matrices, Feng et al. [17] derived an on-

ine RPCA algorithm that significantly reduced the required com-

utation and memory. He et al. [43] proposed an online robust

rassmannian subspace tracking algorithm that operates highly

ubsampled frames. Xu et al. [44] further enhanced the online

rassmannian subspace tracking with structure sparsity to pro-

ide some tolerance to homogeneous perturbations. Wang et al.

45] proposed an online expectation-maximization (EM) algorithm

o solve the probabilistic robust matrix factorization model. Ro-

riguez and Wohlberg [18] introduced an incremental and Rank-

 modifications for thin SVD to derive an online implementation.

nder the low-rank factorization framework, Yong et al. [23] mod-

led moving objects by a mixture of Gaussians (MoG) distribution

nd embedded an affine transformation operator to adapt to cam-

ra movements. In [46] , Javed et al. segmented the data matrix into

uperpixels through graph partitioning and then utilized online

aximum norm matrix decomposition and the generalized fussed

asso constraint to estimate low rank components and sparse fore-

rounds. Qiu et al. [47–49] designed a recursive projected com-

ressive sensing (ReProCS) method which can successfully sepa-

ate slowly changing backgrounds and foregrounds. Based on Re-

roCS, Narayanamurthy [50] proposed a memory-efficient robust

CA model (MERoP) with nearly-optimal memory complexity and

erformances guarantees. 

Previous methods usually focused on one or two particular

spects of the challenges in background/foreground separation,

hich might limit their applicability in more practical scenario,

.g. , surveillance with camera panning high-definition inputs. To

his end, we proposed a unified optimization framework with four-

old merits: 1) moving awareness through motion extraction, 2)

ffine invariance with simultaneously optimization of transforma-

ion and separation, 3) temporal scalability via online implementa-

ion, 4) spatial scalability by pyramidal implementation. 

. Spatiotemporally scalable matrix recovery 

In this section, we present our SSMR method in details. Pre-

ious works [6,19] demonstrated that excluding the foreground re-
ion in the data term helps to resolve the foreground leakage prob-

em of the plain RPCA model [2] . Therefore, we develop our model

pon the batch-mode MAMR model [19] , which incorporates a mo-

ion map to modulate the data consistency. We first present the

emporal scalable matrix recovery model in Section 3.1 , and then

erive an online numerical algorithm in Section 3.2 . Section 3.3 ap-

lies the model to a multiscale pyramid representation to achieve

patial scalability. 

.1. Spatiotemporally scalable matrix recovery model 

Let d k ∈ R 

m ×1 denote the vector form of the k th frame of

he input video sequence consisting of m pixels. The input

ideo sequence can be compactly represented by matrix D =
 

d 1 , d 2 , . . . , d n ] ∈ R 

m ×n , where n is the number of frames. Denoted 

he background component and complementary error in D by B

nd E , respectively. The RPCA model with a weighted data term is

ormulated as: 

in 

B , E 

1 

2 

‖ 

W � ( D − B − E ) ‖ 

2 
F + λ1 ‖ 

B ‖ ∗ + λ2 ‖ 

E ‖ 1 , (1) 

here || ·|| F , || ·|| ∗ and || ·|| 1 denote the Frobenius norm, nuclear

orm (sum of singular values) and � 1 norm of a matrix, respec-

ively, and “�” denotes the element-wise multiplication of two ma-

rices. λ1 and λ2 are the weights for the nuclear-norm term and

 1 -norm term. W ∈ [0, 1] m × n is a weighting matrix to exclude oc-

luded areas by moving objects, where the additive observation

odel is violated. The weighting matrix is constructed from mo-

ion information estimated by optical flow [51] . Denote by 
(
o 

x 
k 
, o 

y 

k 

)
he horizontal component and vertical component of the optical

ow, respectively, estimated between the current frame d k and its

nchor frame. The elements of W are constructed as follows: 

 ik = 

{ 

0 , 

√ (
o 

x 
ik 

)2 + 

(
o 

y 

ik 

)2 ≥ t , 

1 , otherwise , 
(2) 

here t is a threshold to control the level of optical-flow intensity

egarded as motion. 

The batch-mode model (1) could be overwhelmed by huge data

f high-definition video applications. However, the optimization of

 B ‖ ∗ is inherently in the batch manner, which is difficult to derive

 temporally scalable solution. Inspired by Feng et al. [17] , the nu-

lear norm ‖ B ‖ ∗ can be replaced by the following equivalent form

ith an explicit low-rank matrix factorization 

 

B ‖ ∗ = inf 
L , C 

{ 

1 

2 

‖ 

L ‖ 

2 
F + 

1 

2 

‖ 

C ‖ 

2 
F : B = L C 

� 
} 

, (3) 

here L ∈ R 

m ×r and C ∈ R 

n ×r are the two factorized matrices of B

ith the rank r smaller than both m and n . From a perspective

f signal synthesis, L could be interpreted as the low-dimensional

ubspace basis where the background B lies while C is the corre-

ponding coefficients under the basis. Then, model (1) is reformu-

ated as follows: 

in 

L , C , E 

1 

2 

∥∥W � (D − LC 

� − E ) 
∥∥2 

F 
+ 

λ1 

2 

( ‖ 

L ‖ 

2 
F + ‖ 

C ‖ 

2 
F ) + λ2 ‖ 

E ‖ 1 . (4)

o derive an online algorithm, the objective function should be

ecoupled in terms of observed data d 1 , d 2 , . . . , d n . To this end,

e reformate the objective function in Eq. (4) into the following

orm: 

 n ( L , C , E ; D ) � 

n ∑ 

k =1 

� (c k , e k , L ; d k ) + 

λ1 

2 

‖ 

L ‖ 

2 
F , 

 (c k , e k , L ; d k ) � min 

c k , e k 

1 

2 

‖ 

w k � ( d k − Lc k − e k ) ‖ 

2 
2 

+ 

λ1 ‖ 

c k ‖ 

2 
2 + λ2 ‖ 

e k ‖ 1 , (5) 

2 
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where w k denotes the weighting map for frame d k , c k ∈ R 

r×1 rep-

resents the coefficient of d k under basis L , and e k ∈ R 

m is the er-

ror component in the input frame. Given the same data matrix D ,

minimization of (5) is equivalent to the solution of (4) . However,

the formulation in (5) allows frame-wise alternating minimization

of (c k , e k , L ) as a stochastic optimization [17] , which is detailed as

follows. 

3.2. Numerical algorithm 

With the incoming frame d k and the associated binary weights,

we are to solve the coefficient c k , sparse error e k of d k and update

the background basis L k given their counterparts associated with

the last frame d k −1 . Noting that simultaneous optimization of these

variables are difficult and impractical, we resort to the alternate

direction method (ADM). Let l denote the iteration index of the

alternating optimization. The coefficient c l+1 
k 

and sparse error e l+1 
k 

are updated in turn by minimizing the following sub-problems. { 

min c 
1 
2 

∥∥w k � ( d k − L k −1 c − e l 
k 
) 
∥∥2 

2 
+ 

λ1 

2 ‖ 

c ‖ 

2 
2 

min e 
1 
2 

∥∥w k � ( d k − L k −1 c 
l+1 
k 

− e ) 
∥∥2 

2 
+ λ2 ‖ 

e ‖ 1 

(6)

For the initialization of alternating optimization, we have c 0 
k 

= c k −1 

and e 0 
k 

= e k −1 . c 
l+1 
k 

-subproblem is solved by least squares: 

c l+1 
k 

= (L � k −1 S 1 L k −1 + λ1 I r ) 
−1 L � k −1 S 1 (d k − e l k ) , (7)

where S 1 � diag (w k � w k ) and diag (x ) is an operator to consgtruct

a diagonal matrix with x as its diagonal elements. I r is a r × r iden-

tity matrix. For compact notation, let b k � d k − L k −1 c k . Then, e l+1 
k 

-

subproblem has the following closed-form shrinkage solution: 

e l+1 
k 

= shrink (d k − L k −1 c 
l+1 
k 

, λ2 ./ w k ) (8)

where “./” denotes element-wise division, and S (x , τ) is element-

wise shrinkage function defined as 

S (x i , τi ) � 

{
0 , | x i | < δi , 

sign ( x i )( | x i | − τi ) , otherwise . 
(9)

When the alternating optimization is convergent at iteration l ∗, we

have c k = c l 
∗

k 
and e k = e l 

∗
k 

. 

Model (5) shows that the basis L is updated by minimizing the

cumulative loss with the previous data { d k , c k , e k }. For concise no-

tation, define the observation matrix, weighting matrix, coefficient

matrix, and error matrix as 

D k � [ d 1 , . . . , d k ] , 

W k � [ w 1 , . . . , w k ] , 

C 

� 
k � [ c 1 , . . . , c k ] , 

E k � [ e 1 , . . . , e k ] . (10)

The sub-problem to update L is formulated as following minimiza-

tion problem. 

min 

L 

1 

2 

∥∥W k � (D k − LC 

� 
k − E k ) 

∥∥2 

F 
+ 

λ1 

2 

‖ 

L ‖ 

2 
F . (11)

Define the previously recovered background frames as R k �
D k − E k , and introduce a new matrix Y k � R k − LC 

� 
k 

. Minimization

(11) can be transformed into the following form: 

min 

Y , L 
‖ 

W k � Y ‖ 

2 
F + λ1 ‖ 

L ‖ 

2 
F + λ3 

∥∥Y − R k + LC 

� 
k 

∥∥2 

F 
. (12)

where λ3 is a penalty weight. We update Y k and L k alternatively.

Let l denote the iteration index of the alternating optimization,

and initialize alternating procedure as Y 

0 
k 

= Y k −1 , L 0 
k 

= L k −1 . Y 

l+1 
k 

is solved by least squares: 

Y 

l+1 
k 

= 2 λ3 (R k − L l k C 

� 
k ) ./ ( 2 λ3 + W k � W k ) . (13)
imilarly, the background basis has the following least-squares

losed-form solution: 

 

l+1 
k 

= λ3 (R k − Y 

l+1 
k 

) C k (λ3 C 

� 
k C k + λ1 I ) 

−1 . (14)

Let P k � R k C k = 

∑ k 
t=1 r t c 

� 
t ∈ R 

m ×r , X k � Y k C k = 

∑ k 
t=1 y t c 

� 
t ∈

 

m ×r and Z k � C 

� 
k 

C k = 

∑ k 
t=1 c t c 

� 
t ∈ R 

r×r . The update of L l+1 
k 

is

urther simplified as: 

 

l+1 
k 

= λ3 (P k − X 

l+1 
k 

)(λ3 Z k + λ1 I ) 
−1 , (15)

here matrices P k , X k , and Z k are updated incrementally: 

P k = P k −1 + r k c 
� 
k , 

 

l+1 
k 

= X k −1 + y l+1 
k 

c � k , 

Z k = Z k −1 + c k c k 
� . (16)

In this way, the numerical algorithm for model (3) is temporally

calable as the required computation and memory are not increas-

ng with the number of incoming frames. The numerical algorithm

s summarized into Algorithm 1 . 

lgorithm 1 SSMR algorithm. 

1: Input: observed data [ d 1 , d 2 , . . . , d K ] ∈ R 

m ×K , curr ent 
basis L 0 ∈ R 

m ×r , parameters λ1 , λ2 , λ3 ∈ R , 
number of frames K 

2: Initialize: motion map w 1 = 1 ∈ R 

m , coefficient c 1 = 0 ∈
R 

r , sparse error e 1 = 0 ∈ R 

m 

3: for k = 1 to K do 

4: Construct motion map w k by Eq. (2): 
5: //Line 6–9 solve problem c k and e k 

6: while not converged do 

7: Update the coefficient c k by Eq. (7): 
8: Update the sparse error e k by Eq. (9): 
9: end while 

10: //Line 11–14 solve variable Y k and problem L k 

11: while not converged do 

12: Update Y k by Eq. (13): 
13: Update the basis L k by Eq. (15): 
14: end while 

15: end for 
16: Output: Low-rank data matrix B K = L K C 

� 
K , 

Sparse error matrix E K = [ e 1 , . . . , e K ] 

.3. Pyramidal scheme for spatial scalability 

We note that it is difficult to directly process high-definition

ideos even with the online Algorithm 1 . The most straightfor-

ard way is to down sample the input video to reduce the com-

utation and memory requirement [23] . However, directly down-

ampling tends to lose high resolution information. As shown in

ig. 2 , we propose to apply our model on the pyramid to sep-

rate the foreground components at low-resolution scale and re-

over the background components at high-resolution through pyra-

id reconstruction. We choose the framing pyramid [52] for its

romising capability in noise resilience. 

Let J be the number of scales. The video frame d k is decom-

osed into a J -scale pyramid, generating a low-resolution approx-

mation denoted by d 

0 
k 
, and J high-frequency subbands denoted

y [ h 

1 
k 
, h 

2 
k 
, . . . , h 

J 

k 
] from coarse to fine. Due to successive down-

ampling, d 

0 
k 

has only 1/4 J the number of pixels as d k . To save

omputation and memory resource, we perform our SSMR algo-

ithm on d 

0 
k 

to obtain a coarse version background b 

0 
k 

and the

orresponding foreground mask m 

0 
k 

via background subtract. A

igh-resolution background is recovered by adding back details
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Fig. 2. The work flow of the multi-resolution representation. 
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rom high-frequency subbands [ h 

1 
k 
, h 

2 
k 
, . . . , h 

J 

k 
] through inverting

he pyramid. However, high-frequency subbands containing fore-

round information would bring in foreground residues. To avoid

hese interference, we enlarge the foreground mask m 

0 
k 

by bicu-

ic interpolation into a mask pyramid [ m 

1 
k 
, m 

2 
k 
, . . . , m 

J 

k 
] associated

ith pyramid [ b 

0 
k 
, h 

1 
k 
, h 

2 
k 
, . . . , h 

J 

k 
] . Then, foreground information in

ubband h 

j 

k 
is removed using the mask: ˜ h 

j 

k 
= h 

j 

k 
� m 

j 

k 
. Finally,

he high resolution background b 

h 
k 

is reconstructed from pyramid

 b 

0 
k 
, ̃  h 

1 
k 
, ̃  h 

2 
k 
, . . . , ̃  h 

J 

k 
] . 

. Robust SSMR against moving backgrounds 

In the proposed SSMR model (1) , the low-rank prior on back-

round components suggest that backgrounds in video clips are

tatic at least approximately. However, cameras could have jitters

nd motions. For example, outdoor surveillance cameras could be

haken in bad weather such as fierce wind or huge waves, result-

ng in videos with dynamic background; videos shot by a handheld

amera also have varying global motions. Such videos with camera

itter and motion violate the low-rank assumption for background

odeling, leading to severe blurring artifacts in recovered back-

rounds. To achieve robustness to moving backgrounds, we extend

ur SSMR model by embedding a transformation operator, which

s simultaneously optimized with other variables. 

.1. SSMR with online alignment 

To align the video frames, a reference frame (usually the first

rame) is selected as the benchmark view and the subsequent

rames are warped to the viewpoint of the reference frame, so

hat the low-rank assumption is still hold. Moving backgrounds are

ainly due to camera motions such as jitter, rotation, translation,

r/and panning, which could be described by affine transforma-

ions. Denote by τk ∈ R 

p the affine transform for frame d k , and by

 k ◦τ k the aligned version of d k to the reference frame, where ◦ is

he transform operator. Then, D ◦ τ � [ d 1 ◦ τ1 , d 2 ◦ τ2 , . . . , d n ◦ τn ] is

he observed matrix after the transformation. The most straightfor-

ard way is to first estimate the transformation and then perform

atrix recovery on the aligned video. Instead, we simultaneously

ptimize the transformation and the background, yielding the fol-

owing model. 

min 

 , C , E , τ

1 

2 

∥∥W � (D ◦ τ − L C 

� − E ) 
∥∥2 

F 
+ 

λ1 

2 

( ‖ 

L ‖ 

2 
F 

+ ‖ 

C ‖ 

2 
F ) + λ2 ‖ 

E ‖ 1 + λ4 ‖ 

W � (D ◦ τ − F ) ‖ 1 , (17) 
here F � [ f , f , . . . , f ] denotes the reference matrix constructed by

epeating the reference frame f (vector form) as columns, and the

ast term of the objective function regularizes the alignment error.

4 signifies the regularization coefficient. 

Similar to Model (4) , the above model is decoupled in terms

f { d k , c k , e k , τ k }. Given the basis from last update L k −1 , and the

ncoming frame d k and its associated weighting map w k , we have

he following subproblems to solve under the alternating optimiza-

ion framework. 
 

 

 

min τ φ(τ, c l 
k 
, e l 

k 
) + λ4 ‖ 

w k � ( d k ◦ τ − f ) ‖ 1 , 

min c φ(τ l+1 
k 

, c , e l 
k 
) + 

λ1 

2 ‖ 

c ‖ 

2 
2 , 

min e φ(τ l+1 
k 

, c l+1 
k 

, e ) + λ2 ‖ 

e ‖ 1 , 

(18) 

here, for concise presentation, we define the data term as 

(τ, c , e ) � 

1 

2 

‖ 

w k � ( d k ◦ τ − L k −1 c − e ) ‖ 

2 
2 . (19)

As d k ◦τ is nonlinear with respect to the geometric transfor-

ation, the τ -subproblem does not have a closed form solution.

o we use an incremental refinement strategy which approximates

 k ◦τ by a linear expansion d k ◦ τ ≈ d k ◦ τ l 
k 

+ J 	 τ, where J ∈ R 

m ×p 

s the Jacobian matrix of d k ◦ τ l 
k 

with respect to τ l 
k 
. Let x denotes

he coordinate set of d k ◦ τ l 
k 

after transformation, and J has the fol-

owing formulation: 

 = 

∂( d k ◦ ζ ) 

∂x 

∂x 

∂ζ

∣∣∣∣
ζ= τ l 

k 

(20) 

here 
∂( d k ◦ζ ) 

∂x 
and 

∂x 
∂ζ

denote the gradient field of d k ◦ τ l 
k 

and the

acobian matrix of the coordinate set x with respect to τ l 
k 
, respec-

ively. Specifically, assume the pixel q and its coordinate ( i, j ) in d k ,

o the q th row of Jacobian matrix J can be formulate as [53] : 

 q = 

[∇ x d k ◦ τ l 
k 

∇ y d k ◦ τ l 
k 

][1 0 i j 0 0 

0 1 0 0 i j 

]
(21) 

here ∇ x d k ◦ τ l 
k 

and ∇ y d k ◦ τ l 
k 

denote the horizontal and the ver-

ical gradient of pixel q , respectively. 

Instead of solving τ directly, we solve 	 τ by approximating

( τ , c, e ) with the linear expansion: 

(	 τ, c l k , e 
l 
k ) ≈

1 

2 

‖ 

w k � (J 	 τ − b 1 ) ‖ 

2 
2 , 

b 1 � L k −1 c 
l 
k + e l k − d k ◦ τ l 

k . (22) 

oreover, the � 1 -norm term is solved by the weighted least

quares in alternating iterations. Then, the 	 τ -subproblem is
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transformed into the following form. 

min 

	 τ
φ(	 τ, c l k , e 

l 
k ) + λ4 ‖ 

v � w k � (J 	 τ − b 2 ) ‖ 

2 
2 , 

b 2 � f − d k ◦ τ l 
k . (23)

The weighting vector v is constructed as v (i ) = 1 / 
√ | a (i ) | + ε,

where a � w k � (J 	 τ − b 2 ) and ε is a small constant to avoid divi-

sion by zeros. 

Then, 	 τ l+1 
k 

-subproblem has the following closed-form by least

squares. 

	 τ l+1 
k 

= 

(
J � (S 1 + 2 λ4 S 2 ) J 

)−1 J � 
(
S 1 b 1 + 2 λ4 S 2 b 2 

)
, 

S 1 � diag (w k � w k ) , 

S 2 � diag (v � w k � v � w k ) , (24)

where diag (x ) returns the diagonal matrix with x as its diago-

nal elements. Transformation operator τ k is updated by τ l+1 
k 

←
τ l 

k 
+ 	 τ l+1 

k 
. 

Similarly, c l+1 
k 

-subproblem also has a least squares solution: 

c l+1 
k 

= 

(
L � k −1 S 2 L k −1 + λ1 I 

)−1 L � k −1 S 2 ( d k ◦ τ l+1 
k 

− e l k ) (25)

Given 	 τ l+1 
k 

and c l+1 
k 

, e l+1 
k 

-subproblem is a standard � 1 -norm

minimization with the following shrinkage solution. 

e l+1 
k 

= shrink 
(
d k ◦ τ l + 1 

k − L k −1 c 
l + 1 
k , λ2 ./ w k 

)
. (26)

The alternating minimization procedure is repeated until con-

vergence. With { C k , E k , τk }, the background basis L is updated as

in Algorithm 1 (Formulas (13) ∼ (15) ) except that observed frames

{ d k } are now replaced with their aligned version { d k ◦τ k }. The over-

all algorithm to solve our robust SSMR model with simultaneous

alignment is summarized in Algorithm 2 . 

Algorithm 2 RSSMR algorithm. 

1: Input: observed data [ d 1 , d 2 , . . . , d K ] ∈ R 

m ×K , curr ent 
basis L 0 ∈ R 

m ×r , parameters λ1 , λ2 , λ3 , λ4 ∈ R , 
number of frames K 

2: Initialize: motion map w 1 = 1 ∈ R 

m , 
coefficient c 1 = 0 ∈ R 

r , 
sparse error e 1 = 0 ∈ R 

m , 
transform parameter τ1 = 0 ∈ R 

p 

3: for k = 1 to K do 

4: Construct motion map w k by Eq. (2) 
5: //Line 6–13 solve problem 	 τ , c k and e k 

6: while not converged do 

7: Estimate the Jacobian matrix: J = 

∂ d k 
∂τ | τ= τ l 

k 

8: Update 	 τ by Eq. (24) 
9: Update c k by Eq. (25) 

10: Update the sparse error e k by Eq. (26) 
11: τ l+1 

k 
= τ l 

k 
+ 	 τ l+1 

k 

12: Transform d k corresponding to τ l+1 
k 

13: end while 

14: //Line 15–18 solve variable Y k and problem L k 

15: while not converged do 

16: Update Y k by Eq. (13): 
17: Update the basis L k by Eq. (15): 
18: end while 

19: end for 
20: Output: Low-rank data matrix B K = L K C 

� 
K , 

Sparse error matrix E K = [ e 1 , . . . , e K ] 
.2. Implementation issues 

We note that strong camera motion could cause global blur-

ing for the captured frames. Since aligning blurred frames is not

s accurate as clear ones, blurring artifacts would leak into the

ecovered background components. One can remove blurring ar-

ifacts using advanced deblurring techniques before geometrical

lignment. However, blind motion deblurring itself is still a chal-

enging problem. Instead, we propose to detect blurring frames

nd exclude them from the subsequent processing. The exclusion

f blurred frames does not affect the overall task as wide camera

otion only occur short periods in most applications. As shown in

ig. 3 , sharp images have strong gradient fields while their blurred

ersion have weaker ones. Therefore, we detect blurred images us-

ng the total variation on their gradient fields. Let ∇ x d k and ∇ y d k 

e the horizontal and vertical gradient component the k th frame.

he total variation for frame d k is defined as: 

 V k = 

m ∑ 

i =1 

√ 

∇ 

2 
x d (i ) + ∇ 

2 
y d (i ) . (27)

f the total variation TV k is smaller than a threshold T , frame d k is

onsidered as a blurred frame and excluded from the background

odelling. 

. Experimental results 

In this section, we evaluate the proposed method on static,

ynamic and high-definition videos, respectively. We first intro-

uce competing methods, test video sequences, and performance

etrics in Section 5.1 . The setting of experiments is presented in

ection 5.2 . Our algorithm is compared with several state-of-the-

rt methods on both background recovery and foreground detec-

ion on videos with static backgrounds in Section 5.3 and those

ith dynamic backgrounds in Section 5.4 . The comparison results

f high-definition videos are presented in Section 5.5 , followed by

iscussion on computational complexity in Section 5.6 . 

.1. Competing methods, datasets, and performance metrics 

In this paper, we compare with ten prominent methods, includ-

ng four batch-mode methods, i.e. , DECOLOR [6] , RPCA [2] , TVR-

CA [20] , MAMR [19] , and six online-mode methods: ORPCA [17] ,

-GRASTA [54] , OMoGMF [23] , incPCP-TI [42] , MEROP [50] , ReProCS

49] . The source codes of all the competing methods are down-

oaded from their project websites. 

To evaluate the effectiveness of the proposed method, we test

ur algorithm on the CDnet2014 dataset [55] and SBIdataset [56] .

Dnet2014 dataset [55] includes 11 video categories and 53 se-

uences, while SBIdataset [56] contains 14 typical sequences. These

ideo clips range over various challenges such as illumination

hanges, slowly moving objects, and occlusion. Due to the space

imit, we depict the results of some representative sequences, in-

luding eleven challenging video clips selected from CDnet2014

55] ( Sofa and WinterDriveway with intermittent object motion, Of-

ce, Highway and PETS2006 in baseline, PeopleInShade and Bun-

alows with shadow, Badminton, Boulevard, Sidewalk and Traffic

ith camera jitter), three sequences Board, Candela and Hallmonitor

rom SBIdataset [56] and other two classic video sequences named

ars and Browser1 . In addition, for evaluation on high-definition

ideo sequences, we shot four video clips ( Garage1, Garage3, Hall ,

nd Campus ) by Canon 60D. All the competing methods are oper-

ted on the original video frames except for MEROP [50] and Re-

roCS [49] , because the update of their parameters causes the out

f memory problem in our PC. Therefore, we downsample the test

rames by a factor of four, and upsample separated backgrounds

nd foregrounds for comparison. 
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Fig. 3. The example of gradient field. (a) clean image and its gradient field, (b) blur image and its gradient field. 
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Two commonly-used metrics, peak-to-noise ratio (PSNR) and

tructural similarity index (SSIM), are used for quantitative eval-

ation of recovered static backgrounds. F -measure is employed

or the evaluation of moving object detection. Let N cf , N f , and

 gt denote the number of pixels in the correctly-detected re-

ion, detected region, and ground-truth region of moving objects,

espectively. With the definition of precision P � N cf / N f and recall

 � N cf / N gt . The F -measure metric is defined as F m 

� 2 P R/ (P + R ) . In

act, the F -measure balances the recall and precision and gives an

verall quantitative evaluation. A larger F m 

value suggests more ac-

urate foreground detection. 

.2. Experiment setting 

For all comparison methods, we use the default parameters.

or regularization parameters of our method, we set λ1 = 0 . 1 / 
√ 

m ,

2 = 1 , λ3 = 1 / 
√ 

m , λ4 = 10 . λ1 is inversely proportional to m , the

umber of pixels in a frame, as suggested in most literature on

ow-rank matrix recovery [16] . λ2 = 1 is a moderate setting as a

mall value would result in background leakage while a too large

alue would lead to foreground leakage. λ3 is the regularization

arameter to ensure accurate results. λ4 is set at a relative large

alue to ensure accurate alignment. The convergence tolerance is

et at 10 e −4 . The threshold value t for motion map generation from

ptical flow is set at 0.5. For all online RPCA based methods, we

nitialize the subspace basis via randomly selecting a mini-batch of

riginal frames. Empirically, the rank of low-dimensional subspace

s set at 5, i.e. , the size of L is m × 5. 

For videos with static backgrounds, consecutive 200 frames are

sed for experiments. For videos with moving backgrounds, we ex-

lude those frames with severe blurring artifacts, and 120 frames

re used for evaluation. 

.3. Results on videos with static backgrounds 

.3.1. Background recovery 

Tables 1 and 2 show the PSNR and SSIM results for background

ecovery, respectively. The best result for each test clip is in bold
nd the second highest value is underlined. Sequences from differ-

nt datasets are separated by a dash line for convenient observa-

ion. Our SSMR method achieves almost the same average perfor-

ance as the best batch-mode method MAMR [19] : only 0.55 dB

SNR loss and 0.0 0 08 SSIM loss, which demonstrates that the pro-

osed model does not scarifies performance with appealing spa-

iotemporal scalability. Particularly, our method significantly out-

erforms other five online approaches. We also note that MAMR

19] has obvious higher PSNR results than our model for most

equences as the background recovery of a frame in the batch

ode exploits both the backward and forward temporal correla-

ions while our online model uses only previous frames. But the

esults are perceptual close as SSIM differences are within 0.001,

hich is also verified in the following visual comparison. 

Fig. 4 presents visual results of recovered backgrounds by our

ethod and competing ones. Background recovered by our method

re more closer to the ground truth, while those recovered by oth-

rs present foreground leakage or smearing artifacts (marked in

he red box) for most cases. For example, in WinterDriveWay , back-

rounds recovered by RPCA [2] , TVRPCA [20] , OMoGMF [23] , OR-

CA [17] , incPCP-TI [42] , MEROP [50] and ReProCS [49] suffer from

mearing and ghosting artifacts because the slowly-moving car is

istreated as part of the background component. Similarly phe-

omena could be also observed in the results of Browser, Hallmoni-

or, Office, Candela and Sofa , where there are objects are stationary

or a while besides moving. Moreover, moving objects of large ar-

as violate the sparse-foreground assumption in RPCA-type mod-

ls, and thus results in severe foreground leakage. For example,

he background of Bungalows recovered by OMoGMF [23] , RPCA

2] and TVRPCA [20] contain considerable amount of noise in the

egion of car. The man in Board hanging out in front of the white

oard severely leaks into the results recovered by most methods

xcept for MAMR [19] and our proposed SSMR model. 

Both the quantitative and visual results demonstrate that the

roposed SSMR does not only provide spatiotemporal scalability

ut also ensures high performance background performance, par-

icularly in handling challenging cases such as slowly-moving ob-

ects, occlusion and illumination. 
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Table 1 

PSNR comparison of background recovery with different methods for videos with static background. 

Batch-mode methods Online-mode methods 

DECOLOR RPCA TVRPCA MAMR OMoGMF ORPCA incPCP-TI MEROP ReProCS SSMR 

Browser1 36.36 33.89 33.96 37.71 32.01 36.57 26.04 20.69 20.46 37.46 

Bungalows 29.15 28.32 26.54 31.25 33.88 38.13 28.85 26.03 26.03 39.79 

Cars 39.08 29.44 32.01 40.42 34.18 29.73 25.42 23.96 23.95 39.18 

Sofa 32.28 32.47 34.37 39.48 29.47 34.48 29.07 22.32 26.03 37.08 

Office 22.68 20.65 21.56 30.81 21.40 22.47 19.71 18.96 21.19 35.26 

PETS2006 32.12 25.96 33.05 43.10 38.59 34.01 20.80 20.80 23.07 38.43 

WinterDriveway 28.33 24.94 25.18 28.20 19.86 21.83 23.78 18.82 17.80 27.74 

Board 14.20 14.18 14.66 39.79 17.35 20.95 13.88 14.16 15.06 37.07 

Candela [42] 35.43 34.58 35.71 44.14 34.81 31.57 24.86 20.67 21.67 41.89 

CAVIAR1 24.98 27.10 35.33 38.28 28.39 31.49 20.85 26.04 25.86 36.98 

CAVIAR2 26.04 39.89 38.46 41.13 39.72 38.50 24.01 25.64 25.64 38.70 

CaVignal 35.53 25.06 26.39 44.89 23.11 24.14 22.06 20.05 18.67 40.73 

Hallmonitor 37.89 29.35 30.35 39.12 39.85 35.82 27.13 22.40 23.43 39.14 

HighwayI 15.64 38.27 24.00 34.42 34.25 34.00 16.45 26.63 26.64 39.29 

HighwayII 34.97 36.13 34.01 36.73 33.85 34.68 31.29 27.07 24.16 36.62 

HumanBody2 31.12 25.64 26.86 37.31 23.55 21.93 26.02 18.95 18.64 34.20 

IBMtest2 35.42 35.55 32.00 38.81 33.32 32.55 28.54 22.43 22.29 36.73 

Average 30.07 29.38 29.67 37.98 30.45 30.76 24.05 22.09 22.39 37.43 

Table 2 

SSIM comparison of background recovery with different methods for videos with static background. 

Batch-mode methods Online-mode methods 

DECOLOR RPCA TVRPCA MAMR OMoGMF ORPCA incPCP-TI MEROP ReProCS SSMR 

Browser1 0.9470 0.9359 0.9103 0.9523 0.9337 0.9512 0.9135 0.6519 0.6451 0.9509 

Bungalows 0.8343 0.8887 0.8717 0.9464 0.9561 0.9866 0.9558 0.7269 0.7269 0.9889 

Cars 0.9877 0.9596 0.9560 0.9830 0.9670 0.9626 0.9197 0.7895 0.7854 0.9834 

Sofa 0.9711 0.9698 0.9719 0.9876 0.9629 0.9808 0.9572 0.8093 0.8362 0.9832 

Office 0.9358 0.9188 0.9171 0.9823 0.9481 0.9339 0.9052 0.7148 0.7295 0.9829 

PETS2006 0.9809 0.9572 0.9800 0.9919 0.9853 0.9864 0.8913 0.6458 0.6650 0.9873 

WinterDriveway 0.9248 0.9137 0.9092 0.9180 0.8243 0.8841 0.9114 0.5577 0.5251 0.9152 

Board 0.7488 0.6974 0.6965 0.9806 0.6282 0.8002 0.6858 0.4354 0.4728 0.9638 

Candela 0.9788 0.9805 0.9858 0.9951 0.9852 0.9744 0.9331 0.6836 0.7052 0.9939 

CAVIAR1 0.9570 0.9526 0.9687 0.9777 0.9496 0.9625 0.9071 0.8089 0.8083 0.9723 

CAVIAR2 0.9700 0.9847 0.9745 0.9870 0.9849 0.9805 0.9541 0.7494 0.7494 0.9845 

CaVignal 0.9867 0.9490 0.9382 0.9937 0.9190 0.9153 0.9161 0.6228 0.6076 0.9912 

Hallmonitor 0.9720 0.9561 0.9399 0.9741 0.9739 0.9706 0.9376 0.7426 0.7569 0.9721 

HighwayI 0.8954 0.9674 0.8266 0.9680 0.9435 0.9410 0.8708 0.8382 0.8370 0.9662 

HighwayII 0.9474 0.9479 0.9075 0.9534 0.9292 0.9333 0.9289 0.7790 0.7398 0.9527 

HumanBody2 0.9834 0.9594 0.9568 0.9887 0.9530 0.9069 0.9508 0.6575 0.6496 0.9845 

IBMtest2 0.9680 0.9649 0.8975 0.9734 0.9595 0.9497 0.9396 0.7253 0.7226 0.9663 

Average 0.9405 0.9355 0.9181 0.9737 0.9296 0.9424 0.9105 0.7023 0.7037 0.9729 
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5.3.2. Moving objects detection 

With the recovered background, we detect foreground objects

through background subtraction. Table 3 reports quantitative re-

sults (in terms of the F -measure metric) of different methods for

foreground detection on some typical video clips from CDnet2014

[55] and SBIdataset [56] . Our method shows the best performance

on most of sequences, slightly better than the bacth-mode MAMR

[19] by 0.01 on average and outperforming other methods by more

than 10%. For more comprehensive comparison, Table 4 shows the

average F-measure performance of our SSMR model and other com-

peting methods on eight video categories from CDnet2014 dataset

[55] including Bad Weather (BW), Baseline (BL), Camera Jitter (CJ),

Dynamic Background (DB), Intermittent Object Motion (IOM), Low

Framerate (LF), Shadow (SH) and Thermal (TH). The performance

of the proposed method shows great robustness over a wide range

of video categories and achieves the highest F-measure on average,

which also verifies the superiority of our SSMR method. 

Fig. 5 depicts the visual comparison results of different meth-

ods on several sequences. The foreground detection results of

our SSMR model are quite close results to the ground truth and

those recovered by the batch-mode MAMR [19] , DECOLOR [6] and
MoGMF [23] also detect foreground objects accurately for most

est clips. However, DECOLOR [6] tends to over-detect the mov-

ng objects as observed in the results of Cars and Office , while

MoGMF [23] suffers from severe foreground leakage from pre-

ious frames in Browser, Office , and WinterDriway . Compared with

hese three methods, RPCA [2] , ORPCA [17] , TVRPCA [20] , incPCP-TI

42] , MEROP [50] and ReProCS [49] cannot handle those challeng-

ng cases very well such as Bungalows , where almost half area of

he frame is occluded by the car. Therefore, it violates the assump-

ion that the foreground is sparse in RPCA-based models, caus-

ng a lot of holes in the detected foreground. Moreover, the re-

ults of MEROP [50] , ReProCS [49] , OMoGMF [23] , RPCA [2] , TVR-

CA [20] and MAMR [19] in PETS2006 show that three persons are

tanding on the platform, but actually, there are two. That is be-

ause the man stands there for a long time and is treated part of

he background. Additionally, if the object moves from far to near

r from near to far, some pixels would remains constant across

 number of frames and are thus separated into the background

omponent. For example in Office and Hallmonitor , the results of

PCA [2] , TVRPCA [20] , ORPCA [17] and incPCP-TI [42] appear large

reas of holes. 
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Fig. 4. Visual quality comparison of background recovery for videos with static background on ten clips: (a) Raw data, (b) True background, (c) DECOLOR [6] , (d) RPCA [2] , 

(e) TVRPCA [20] , (f) MAMR [19] , (g) OMoGMF [23] , (h) ORPCA [17] , (i) incPCP-TI [42] , (j) MEROP [50] , (k) ReProCS [49] , and (l) SSMR (Ours). From top to bottom: background 

recovery for Browser1, Bungalows, Cars, Sofa, Hallmonitor, Office, Candela, Board, PETS2006, WinterDriveWay , respectively. 
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.4. Results on videos with dynamic backgrounds 

.4.1. Background recovery 

We evaluate the performance of our method on four video se-

uences with moving backgrounds in CDnet2014 [55] , i.e., Bad-

inton, Boulevard, Sidewalk, Traffic . As the dataset does not provide

round truth backgrounds, we only present visual comparison on

even state-of-the-art methods handling dynamic backgrounds, i.e. ,

-MoGMF [23] , DECOLOR [6] , TVRPCA [20] , t-GRASTA [54] , incPCP-

I [42] , MEROP [50] and ReProCS [49] . For fair comparison, all the
Table 3 

F-measure comparison of foreground detection with different methods

Batch-mode methods Onli

DECOLOR RPCA TVRPCA MAMR OM

Browser1 0.75 0.83 0.80 0.86 0.59

Bungalow 0.42 0.13 0.14 0.92 0.81

Cars 0.75 0.71 0.81 0.87 0.75

Highway 0.91 0.91 0.96 0.91 0.87

Office 0.91 0.57 0.65 0.93 0.77

PeopleInShade 0.97 0.93 0.94 0.89 0.88

PETS2006 0.86 0.78 0.71 0.87 0.79

WinterDriveway 0.62 0.63 0.61 0.55 0.12

HallAndMonitor 0.85 0.74 0.80 0.92 0.82

Board 0.52 0.52 0.46 0.88 0.55

CAVIAR1 0.95 0.83 0.91 0.92 0.79

CAVIAR2 0.80 0.79 0.75 0.79 0.78

CaVignal 0.92 0.71 0.85 0.88 0.61

Candela 0.57 0.43 0.88 0.91 0.47

HighwayI 0.72 0.64 0.77 0.71 0.50

HighwayII 0.94 0.94 0.89 0.94 0.60

HumanBody2 0.93 0.62 0.70 0.82 0.43

IBMtest2 0.80 0.88 0.80 0.84 0.73

Average 0.79 0.70 0.75 0.86 0.66
lgorithms use the same test video clips with blurring frames ex-

luded. 

Fig. 6 shows the recovery results of dynamic background. Accu-

ate alignment is crucial to handle dynamic background otherwise

he recovered background would be blurred by accumulating non-

ligned features. As TVRPCA [20] does not align video frames ex-

licitly, the recovered backgrounds contains significant residue of

oving objects at different frames. 

The results recovered by t-GRASTA [54] , t-MoGMF [23] and

ncPCP-TI [42] present less amount of foreground leakage due to
 for videos with static background. 

ne-mode methods 

oGMF ORPCA incPCP-TI MEROP ReProCS SSMR 

 0.81 0.59 0.36 0.33 0.84 

 0.91 0.64 0.76 0.81 0.93 

 0.68 0.73 0.66 0.68 0.90 

 0.88 0.74 0.84 0.34 0.96 

 0.72 0.62 0.65 0.86 0.93 

 0.89 0.69 0.93 0.92 0.91 

 0.81 0.78 0.68 0.68 0.87 

 0.29 0.57 0.43 0.20 0.55 

 0.83 0.70 0.80 0.79 0.83 

 0.68 0.37 0.48 0.69 0.91 

 0.88 0.42 0.71 0.70 0.95 

 0.80 0.10 0.51 0.48 0.84 

 0.66 0.86 0.62 0.58 0.83 

 0.68 0.28 0.58 0.81 0.93 

 0.41 0.59 0.61 0.61 0.72 

 0.56 0.94 0.73 0.47 0.95 

 0.56 0.71 0.62 0.61 0.88 

 0.75 0.81 0.65 0.66 0.89 

 0.71 0.62 0.65 0.62 0.87 
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Table 4 

Average F-measure comparison on the CDnet2014 dataset. N indicates that those methods cannot handle dynamic 

videos. 

BW BL CJ DB IOM LF SH TH Average 

Batch-mode 

methods 

DECOLOR [6] 0.86 0.88 0.66 0.71 0.59 0.79 0.86 0.70 0.76 

RPCA [2] 0.85 0.78 N 0.82 0.65 0.78 0.77 0.59 0.75 

MAMR [19] 0.88 0.89 N 0.86 0.77 0.81 0.85 0.82 0.84 

Online-mode 

methods 

OMoGMF [23] 0.75 0.79 0.67 0.76 0.60 0.80 0.66 0.71 0.72 

ORPCA [17] 0.76 0.75 N 0.72 0.62 0.73 0.74 0.78 0.73 

incPCP-TI [42] 0.57 0.71 0.59 0.73 0.61 0.66 0.62 0.59 0.64 

MEROP [50] 0.72 0.65 0.66 0.69 0.50 0.61 0.65 0.75 0.65 

ReProCS [49] 0.56 0.57 0.68 0.67 0.51 0.61 0.60 0.75 0.62 

SSMR 0.91 0.90 0.82 0.86 0.75 0.83 0.83 0.88 0.85 

Fig. 5. Visual quality comparison of foreground detection for videos with static background on nine clips: (a) Raw data, (b) Ground-truth, (c) DECOLOR [6] , (d) RPCA [2] , (e) 

TVRPCA [20] , (f) MAMR [19] , (g) OMoGMF [23] , (h) ORPCA [17] , (i) incPCP-TI [42] , (j) MEROP [50] , (k) ReProCS [49] , and (l) SSMR (Ours). From top to bottom: foreground 

detection for Browser1, Bungalows, Cars, Hallmonitor, Highway, Office, PeopleInShade, PETS2006, WinterDriveWay , respectively. 

Fig. 6. Visual quality comparison for dynamic videos background recovery on four clips. (a) Raw data, (b) t-OMoGMF [23] , (c) DECOLOR [6] , (d) TVRPCA [20] , (e) t-GRASTA 

[54] , (f) incPCP-TI [42] , (g) MEROP [50] , (h) ReProCS [49] , and (i) RSSMR (Ours). From top to bottom: background recovery for Badminton, Boulevard, Sidewalk, Traffic , respec- 

tively. 
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Table 5 

F -measure comparison with different methods for dynamic videos 

foreground detection. 

Badm. Boul. Side. Traf. Average 

t-OMoGMF [23] 0.72 0.81 0.45 0.67 0.67 

DECOLOR [6] 0.86 0.68 0.49 0.62 0.66 

TVRPCA [20] 0.52 0.77 0.08 0.61 0.50 

t-GRASTA [54] 0.46 0.62 0.08 0.81 0.49 

incPCP-TI [42] 0.55 0.82 0.06 0.91 0.59 

MEROP [50] 0.55 0.78 0.77 0.53 0.66 

ReProCS [49] 0.54 0.84 0.76 0.57 0.68 

RSSMR 0.73 0.94 0.68 0.91 0.82 
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ffective alignments. The recovered background of Boulevard by

ECOLOR [6] presents overlapping artifacts as the frequent switch-

ng of reference frame suffers from the drifting of alignment errors.

n addition, MEROP [50] and ReProCS [49] have similar results, and

hey both contain severe foreground leakage. Our model recov-

rs clean backgrounds for all the four challenging test sequences

hanks to the effective modeling of background motion and effi-

ient numerical algorithm. 

.4.2. Foreground detection 

Table 5 shows quantitative results of foreground detection in

erms of F -measure. Our method achieves the highest average F -

easure value and outperform the second one by 20%. The vi-

ual results in Fig. 7 are also consistent with the quantitative re-

ults: foregrounds recovered by our methods are quite close to the

round-truth ones. The foreground detected by DECOLOR [6] , t-

MoGMF [23] , MEROP [50] and ReProCS [49] include significant

mount of background content, while TVRPCA [20] and t-GRASTA

54] tend to yield incomplete detection results, e.g. , the persons

n Badminton and Sidewalk . Moreover, our method is able to han-

le objects with small structures. For example the moving truck in

oulevard is occluded by a tree belonging to the background. All

he competing methods mis-detect the tree as foreground, while

ur method accurately separate it from the foreground. 

.5. Results on high-definition videos 

In this part, we evaluate our SSMR model on high-definition

ideo clips of size 1920 × 1080 × 100. We randomly select succes-

ive 100 frames for validation. Each frame is first decomposed into

 two-level pyramid, where the low-frequency subband image of

ize 480 × 270 are fed into the matrix recovery model. The recov-

red background is transformed back to high resolution through

oreground masking and pyramid reconstruction. We compared

ith two competing online methods, OMoGMF [23] and ORPCA

17] , as the data volume is to large for batch-mode approaches due
ig. 7. Visual quality comparison for dynamic videos foreground detection on four clips. (a

f) t-GRASTA [54] , (g) incPCP-TI [42] , (h) MEROP [50] , (i) ReProCS [49] , and (j) RSSMR (O

raffic , respectively. 
o memory limitation. Moreover, the associated results for fore-

round detection via background subtraction are not presented as

hey are consistent with the background results. Fig. 8 shows visual

uality results of recovered backgrounds from four high-definition

ideo clips, i.e., Garage1, Garage3, Hall , and Campus . Our method

ignificant outperforms other two online methods for videos with

lowly moving objects such as Garage1, Garage3 and Hall , which

s also verified by the quantitative results in Table 6 . The re-

ults demonstrate that the proposed SSMR model not only pro-

ide computational-and-space-efficient solution for high-definition 

ideos, but also ensure high performance background modeling. 

.6. Discussions 

.6.1. Computational complexity 

For convenient discussion, we restate the key notations: m for

umber of pixels in a video frame, n the number of frames in

 video clip, m × r the size of background basis L . Our method

ainly consists of two parts: motion information extracted by op-

ical flow [51] and alternating minimization of four subproblems:

 -subproblem in Eq. (6) , e -subproblem in Eq. (6) , τ -subproblem in

q. (18) , and L -subproblem in Eq. (11) . To solve a c -subproblem,

he preparation of the standard least squares form needs O ( mr 2 )

oating point multiplications, and pre-conditioned conjugate gra-

ient algorithm has a computational complexity of O (r 2 
√ 

κ) ,

here κ is condition number of the associated normal equations.

herefore, c -subproblems totally needs O (n (m + 

√ 

κ) r 2 ) floating

oint multiplications. Similarly, the computational complexity of

-subproblems is O ( nmr ) as the number of variables of the affine

ransformation is a constant. With the incremental implementa-

ion, the computational complexity of L -subproblems is O (n (m +
 ) r 2 ) , which is dominated by the matrix inversion and matrix-

atrix multiplication in Eq. (15) . Each e -subproblem is standard

 1 norm minimization via soft thresholding, and converges for

p to three iterations in alternating minimization. Therefore, e -

ubproblems for n frames totally need O ( nm ) element-wise shrink-

ge operations. Moreover, with the pyramidal implementation for

igh-definition videos, the required computation is reduced to its

/4 J , e.g. , 1/16 for two-level pyramid decomposition in our imple-

entation. 

Our algorithm and other competing ones are implemented in

ATLAB, and run on a desktop with Intel i5 2.8 GHz CPU and 8GB

AM. For our algorithm, the percentage of averaged running time

or c -subproblems, e -subproblems, τ -subproblems, L -subproblems,

nd optical flow are 0.15%, 0.02%, 28.01%, 3.20%, and 60.71%, re-

pectively. Table 7 lists statistics of average running times of high

esolution videos for single frame. We do not present the results

or batch-mode algorithms as they require several hours or can-

ot even be launched due to memory limitation. The running time
) Raw data, (b) Groundtruth, (c) t-OMoGMF [23] , (d) DECOLOR [6] , (e) TVRPCA [20] , 

urs). From top to bottom: background recovery for Badminton, Boulevard, Sidewalk, 
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Fig. 8. Visual quality exhibition for high resolution videos on four clips. (a) Raw data. (b) Groundtruth. (c) OMoGMF [23] . (d) ORPCA [17] . (e) SSMR (Ours). From top to 

bottom: background recovery for Garage1, Garage3, Hall, Campus , respectively. 

Fig. 9. Failure cases for Snellen, PeopleAndFoliage and Foliage . (a) Raw data, (b) True background, (c) DECOLOR [6] , (d) RPCA [2] , (e) TVRPCA [20] , (f) MAMR [19] , (g) OMoGMF 

[23] , (h) ORPCA [17] , (i) incPCP-TI [42] , (j) MEROP [50] , (k) ReProCS [49] , and (l) SSMR (Ours). From top to bottom: background recovery for Snellen, PeopleAndFoliage and 

Foliage , respectively. 

Table 6 

Quantitative comparison for high resolution videos background recovery. 

Garage1 Garage3 Hall Campus Average 

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

OMoGMF [23] 25.27 0.9603 24.90 0.9688 22.95 0.9715 30.41 0.9667 25.88 0.9668 

ORPCA [17] 29.17 0.9696 30.40 0.9745 24.18 0.9699 31.97 0.9628 28.93 0.9692 

SSMR 30.19 0.9865 32.47 0.9845 34.39 0.9756 32.87 0.9697 32.48 0.9791 

Table 7 

Average time consuming comparison for high resolution videos. 

Gara1 Gara3 Hall Camp Average 

OMoGMF [23] 3.29 3.19 3.05 3.08 3.15 

ORPCA [17] 5.64 5.90 5.85 5.53 5.73 

SSMR 4.77 5.83 5.14 5.60 5.34 
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of our algorithm is comparable to that of ORPCA [17] , and larger

than that of t-OMoGMF [23] . As the optical flow module takes up

60.71% of computation, the running time could be reduced using a

faster optical flow algorithm. Besides, our algorithm could be fur-

ther accelerated by more efficient implementation and paralleliza-

tion. 

5.6.2. Failure cases 

As shown in Fig. 9 , we present some failure cases from

SBIdataset [56] for Snellen, PeopleAndFoliage and Foliage . These clips

are extremely complex and the quantitative results of all the com-

peting methods are much lower than other test sequences. All the

competing methods suffer from severe foreground leakage due to

the violation of sparse prior on the foreground component. For our

SSMR model, since most elements in motion weight matrix are
ero, the model cannot well recover the background from only few

bserved pixels. But compared with other methods, our results are

isually better. Such cases suggest that, more work is still neces-

ary to challenge these complex scenarios. 

. Conclusions 

This paper propose a unified framework called SSMR for back-

round modeling and moving object detection from video se-

uences. In the proposed model, nuclear norm is used to con-

trained background components to satisfy the low-rank prior

hile the foreground is regularized by a sparsity prior. To achieve

nline implementation, the nuclear norm is formulated as the

xplicit product of two low-rank matrices. Therefore, the SSMR

odel is able to process videos frame by frame in the real-time

pplications. An affine transformation is embedded into our model

o automatically compensate camera movements, and is optimized

nline with other model variables. Moreover, our model is inte-

rated into a multiscale pyramid representation to achieve spatial

calability. An ADM algorithm is derived to solve our SSMR model.

xperimental results on various test video sequences demonstrate

hat our model is able to separate background and moving objects

rom different types of complex scenes. The proposed model shows
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etter performance than several batch-mode methods for most

ases and outperforms two state-of-the-art online approaches. 
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